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1 Overview 

This guide is an introduction to using the RevoPemaR package to write customized 
scalable and distributable analytics in R. PEMA stands for Parallel External Memory 
Algorithm.  An external memory algorithm is one that does not require all of the data to 
be in memory at one time; that is, the data can be processed in chunks.  Parallel 
external memory algorithms are those where the chunks of data can be processed in 
parallel, perhaps on different nodes of a cluster. The results are then combined and 
processed at the end (or at the end of each iteration).  The RevoPemaR package 
provides a framework for writing parallel external memory algorithms in R, making use of 
the R reference classes introduced by John Chambers in R 2.12. 

The custom PEMA functions created using the RevoPemaR framework are appropriate 
for small and large datasets, but are particularly useful in three common situations: 1) to 
analyze data sets that are too big to fit in memory, 2) to create scalable data analysis 
routines that can be developed locally with smaller data sets, then deployed to larger 
data, and 3) to perform computations distributed over nodes in a cluster, 

The RevoPemaR framework is portable.  The goal is to be able to have code written 
using R on a desktop be deployed using the RevoScaleR package on a high 
performance platform, such as Hadoop.  

2 Installation 

The RevoPemaR package is included with Microsoft R Services 2016 (which also 
contains the RevoScaleR package). The RevoPemaR package can also be installed 
with a standard download of R 3.2.2 

3 Some Tips on R Reference Classes 

The PEMA classes used in RevoPemaR are based on R Reference Classes. We include a 
brief overview of some tips for using R Reference Classes here, before moving to the 
specifics of the PEMA classes.  

R Reference Class objects are created using a generator function. This function has four 
important pieces of information: 

 The name of the class. 

 The inheritance of the class, that is, the superclasses of the class.  Fields and 
methods of parent reference classes are inherited. 

 The fields or member variables.  These fields are accessed by reference (as in C++ 
or Java), so values of the fields for an object of this class can change. 

 The methods of the class. These are functions that can be invoked by objects of this 
class, which might change values of the fields. 
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When working with reference class, here are a few tips to keep in mind: 

 Reference class generators are created using setRefClass. For the PEMA 

classes, we will use a wrapper for that function, setPemaClass. 

 Field values are changed within methods using the non-local assignment 

operator (<<-) 

 Methods are documented internally with an initial line of text, rather than in an 
.Rd file. This information is accessed using the $help method for the generator 
function.  

 The reference class object can be accessed in  the methods using .self 

 The parent method can be accessed using  .callSuper 

 Use the usingMethods call to declare that a method will be used by another 
method.  

 The code for a method can be displayed using an instantiated reference class 

object, e.g. myRefClassObj$initialize. 

4 A Tutorial Introduction to RevoPemaR  

This section contains an overview of a simple example of estimating the mean of a 

variable using the RevoPemaR framework.  The key step is in creating a PemaMean 
reference class generator function that provides the fields and methods for computing 
the mean using a parallel external memory algorithm.  This includes creating methods to 
compute the sum and number of observations for each chunk of data, to update these 
“intermediate results”, and at the end to use the intermediate results to compute the 
mean. 

4.1 Using setPemaClass to Create a Class Generator 

Start by making sure that the RevoPemaR package is loaded: 

library(RevoPemaR) 

To create a PEMA class generator function, use the setPemaClass function.  It is a 

wrapper function for setRefClass.  As with setRefClass, we will specify four basic 

pieces of information when using setPemaClass: the class name, the superclasses, the 
fields, and the methods.  The structure looks something like this: 

PemaMean <- setPemaClass( 

 Class = "PemaMean",  

 contains = "PemaBaseClass", 

 fields = list( # To be written 

  ), 

methods = list( # To be written 

     )) 

The Class is the class name of your choice. The contains argument must specify 

PemaBaseClass or a child class of PemaBaseClass.  The specification of fields and 
methods follows. 
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4.1.1 Specifying the fields for PemaMean 

The fields or member variables of our class represent all of the variables we need in 
order to compute and store our intermediate and final results.  Here are the fields we will 
use for our “means” computation: 

 fields = list( 

  sum = "numeric", 

  totalObs = "numeric", 

         totalValidObs = "numeric", 

  mean = "numeric", 

  varName = "character" 

  ), 

4.1.2 An Overview of the methods for PemaMean 

There are five methods we will specify for PemaMean.  These methods are all in the 

PemaBaseClass, and need to be overloaded for any custom analysis. 

 initialize: initializes field values. 

 processData: processes a chunk of data and updates field values 

 updateResults: updates the field values of a PEMA class object from another 

 processResults: computes the final results from the final intermediate results 

 getVarsToUse: the names of the variables in the dataset used for analysis 

4.1.3 The initialize method 

The primary use of the initialize method is to initialize field values. The one field that 

is initialized with user input in this example is the name of the variable to use in the 

computations, varName.  Use of the ellipses in the function signature allows for 

initialization values to be passed up to the parent class using .callSuper, the first action 

in the initialize method after the documentation.  Here is the beginning of our 
methods listing: 

 methods = list( 

     initialize = function(varName = "", ...)  

     { 

            'sum, totalValidObs, and mean are all initialized to 0' 

            # callSuper calls the initialize method of the parent class 

            callSuper(...)    

The pemaSetClass function also provides additional functionality used in the 

initialize method to ensure that all of the methods of the class and its parent classes 
are included when an object is serialized.  This is critical for distributed computing. To 
use this functionality, add the following to the initialize method: 

                   usingMethods(.pemaMethods)  

(If you do not want to use this functionality you can omit this line and set 

includeMethods to FALSE in setPemaClass.) 
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Now we finish the field initialization, setting the varName field to the input value and 
setting the starting values for our computations to 0, remembering to use the double-
arrow non-local assignment operator to set field values: 

   varName <<- varName 

   sum <<- 0 

   totalObs <<- 0 

                  totalValidObs <<- 0 

                  mean <<- 0  

   }, 

 

4.1.4 The processData method 

The processData method is the core of an external memory algorithm.  It processes a 

chunk of data and computes intermediate results, updating the field value(s). It takes as 
an argument a rectangular list of data vectors; typically only the variable(s) of interest will 
be included.  Note that in our example code we do not compute the mean within this 
method; that occurs after we have processed all of the data. Here we compute and 
update the intermediate results: the sum and number of observations: 

  processData = function(dataList)  

  { 

      'Updates the sum and total observations from  

                 the current chunk of data.' 

                 sum <<- sum + sum(as.numeric(dataList[[varName]]),  

                     na.rm = TRUE) 

 

                 totalObs <<- totalObs + length(dataList[[varName]]) 

 

       totalValidObs <<- totalValidObs +  

                     sum(!is.na(dataList[[varName]])) 

                 invisible(NULL) 

  }, 

4.1.5 The updateResults method 

The updateResults is the key method used when computations are done in parallel.  

Consider the following scenario: 

1) The master node on a cluster assigns each worker node the task of processing a 
series of chunks of data.   

2) The workers do so in parallel, each with their own instantiation of a reference class 

object. Each worker calls processData for each chunk of data it needs to process.  
In each call, the values of the fields of its reference class object are updated.  

3) Now the master process must collect the information from each of the nodes, and 
update all of the information in a single reference class object. This is done using the 

updateResults method, which takes as an argument another instance of the 
reference class. The reference class object from each of the nodes is processed by 
the master node, resulting in the final intermediate results in the master node’s 
reference class object’s fields. 
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Here is the updateResults method for our PemaMean: 

  updateResults = function(pemaMeanObj) 

  { 

                'Updates the sum and total observations from  

                 another PemaMean object.' 

 

                sum <<- sum + pemaMeanObj$sum 

      totalObs <<- totalObs + pemaMeanObj$totalObs 

                totalValidObs <<- totalValidObs + pemaMeanObj$totalValidObs 

 

                invisible(NULL) 

  }, 

4.1.6 The processResults method 

The processResults performs any necessary computations to produce the final 

result from the accumulated intermediate results.   In this case it is simple; we divide 
the sum by the number of valid observations (assuming we have some): 

     processResults = function() 

        { 

            'Returns the sum divided by the totalValidObs.' 

  if (totalValidObs > 0) 

  { 

   mean <<- sum/totalValidObs 

  } 

   else 

  { 

   mean <<- as.numeric(NA) 

  } 

  return( mean )  

        }, 

4.1.7  The getVarsToUse method 

The getVarsToUse method specifies the names of the variables in the dataset that are 
used in the analysis.  Specifying this information can improve performance if reading 
data from disk. 

        getVarsToUse = function() 

        { 

            'Returns the varName.'  

            varName 

        } 

 ) # End of methods 

) # End of class generator 
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4.2 Creating and Using a PemaMean Reference Class Object 

4.2.1 Instantiating and Exploring a PemaMean Object 

A version of the code in the previous section is contained within the RevoPemaR 

package and exported, so we can directly work with the PemaMean generator without 
first running the code. We can show the names of all the methods, including those that 

are explicitly overridden by the PemaMean class: 

PemaMean$methods() 

 

 [1] ".pemaMethods"                 ".pemaMethods#PemaBaseClass"   
 [3] "callSuper"                    "compute"                      
 [5] "copy"                         "copyFields"                   
 [7] "createReturnObject"           "export"                       
 [9] "field"                        "finalizeNode"                 
[11] "getClass"                     "getFieldList"                 
[13] "getRefClass"                  "getVarsToRead"                
[15] "getVarsToUse"                 "getVarsToUse#PemaBaseClass"   
[17] "hasConverged"                 "import"                       
[19] "initFields"                   "initialize"                   
[21] "initialize#PemaBaseClass"     "initIteration"                
[23] "outputTrace"                  "processAllData"               
[25] "processData"                  "processData#PemaBaseClass"    
[27] "processResults"               "processResults#PemaBaseClass" 
[29] "setFieldList"                 "show"                         
[31] "trace"                        "untrace"                      
[33] "updateResults"                "updateResults#PemaBaseClass"  
[35] "usingMethods"    

Some of the methods (e.g., initIteration, getFieldList) are inherited from the 

PemaBaseClass.  Others (e.g., .callSuper, methods) are inherited from the base 
reference class generator. 

We can use the help method with the generator function to get help on specific 
methods: 

PemaMean$help(initialize) 

 

Call: 
$initialize(varName = , ...) 
 
 
sum, totalValidObs, and mean are all initialized to 0 

Next we’ll generate a default PemaMean object, and print out the values of its fields 

(including those inherited): 

meanPemaObj <- PemaMean() 

meanPemaObj 

 

Reference class object of class "PemaMean" 
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Reference class object of class "PemaMean" (from the global environment) 
Field ".isPemaObject": 
[1] TRUE 
Field ".isDistributedContext": 
[1] FALSE 
Field ".hasOutFile": 
[1] FALSE 
Field ".outFile": 
NULL 
Field ".append": 
[1] "none" 
Field ".overwrite": 
[1] FALSE 
Field ".onlyKeepTransformedData": 
[1] FALSE 
Field "traceLevel": 
[1] 0 
Field "iter": 
[1] 0 
Field "maxIters": 
[1] 2000 
Field "useRevoScaleR": 
[1] TRUE 
Field ".dataInMemory": 
[1] FALSE 
Field ".dataInMemoryPrepared": 
[1] FALSE 
Field "reportProgress": 
[1] 2 
Field "sum": 
[1] 0 
Field "totalObs": 
[1] 0 
Field "totalValidObs": 
[1] 0 
Field "mean": 
[1] 0 
Field "varName": 
[1] "" 

We can also print out the code for a specific method using an instantiated object.  For 

example, the initialize method of the PemaMean object in the RevoPemaR package is: 

meanPemaObj$initialize 

 

Class method definition for method initialize() 
function (varName = "", ...)  
{ 
    "sum, totalValidObs, and mean are all initialized to 0" 
    callSuper(...) 
    usingMethods(.pemaMethods) 
    varName <<- varName 
    sum <<- 0 
    totalObs <<- 0 
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    totalValidObs <<- 0 
    mean <<- 0 
} 
<environment: 0x000000003148ea40> 
 
 Methods used:   
    ".pemaMethods", "callSuper", "usingMethods"" 
 

4.2.2 Using a PemaMean Object with the pemaCompute Function 

The pemaCompute function takes two required arguments: an “analysis” object and a 

data source object.  The analysis object must be generated by setPemaClass and 

inherit (directly or indirectly) from PemaBaseClass.  The data source object must be 
either a data frame or a data source object supported by the RevoScaleR package if it is 

available.  The ellipses will take any additional information used in the initialize 
method. 

Let’s compute a mean of some random numbers: 

set.seed(67) 

pemaCompute(pemaObj = meanPemaObj,  

 data = data.frame(x = rnorm(1000)), varName = "x") 

 

[1] 0.00504128 
 

If we again print the values of the fields of our meanPemaObj, we will see the updated 
values: 

meanPemaObj 

 

Reference class object of class "PemaMean" (from the global environment) 
Field ".isPemaObject": 
[1] TRUE 
Field ".isDistributedContext": 
[1] FALSE 
Field ".hasOutFile": 
[1] FALSE 
Field ".outFile": 
NULL 
Field ".append": 
[1] "none" 
Field ".overwrite": 
[1] FALSE 
Field ".onlyKeepTransformedData": 
[1] FALSE 
Field "traceLevel": 
[1] 0 
Field "iter": 
[1] 1 
Field "maxIters": 
[1] 2000 
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Field "useRevoScaleR": 
[1] TRUE 
Field ".dataInMemory": 
[1] FALSE 
Field ".dataInMemoryPrepared": 
[1] FALSE 
Field "reportProgress": 
[1] 2 
Field "sum": 
[1] 5.04128 
Field "totalObs": 
[1] 1000 
Field "totalValidObs": 
[1] 1000 
Field "mean": 
[1] 0.00504128 
Field "varName": 
[1] "x" 
 

By default the pemaCompute method will reinitialize the pemaObj.  By setting the 

initPema flag to FALSE, we can add more data to our analysis: 

pemaCompute(pemaObj = meanPemaObj,  

 data = data.frame(x = rnorm(1000)), varName = "x",  

      initPema = FALSE) 

[1] 0.001516969 
 
meanPemaObj$totalValidObs 

[1] 2000 
 

Note that the number of total valid observations is now 2000. 

4.2.3 Using a RevoScaleR Data Source with the pemaCompute Function 

In the previous section we analysed data in memory.  The RevoScaleR package 
provides a data source framework that allows data to be automatically extracted in 

chunks from data on disk or in a database.  It also provides the .xdf file format that can 
very efficiently extract chunks of data. 

We can use a sample .xdf file provided with the package.  First we will create a data 
source for this file: 

 
airXdf <- RxXdfData(file.path(rxGetOption("sampleDataDir"), 

    "AirlineDemoSmall.xdf")) 

 

Using the meanPemaObj created above, we compute the mean of the variable ArrDelay 
(the arrival delay in minutes). The data in this file is stored in three blocks, with 200,000 

rows in each block. The pemaCompute function will process these chunks one at a time: 
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pemaCompute(meanPemaObj, data = airXdf, varName = "ArrDelay") 

 

Rows Read: 200000, Total Rows Processed: 200000, Total Chunk Time: 0.009 seconds 
Rows Read: 200000, Total Rows Processed: 400000, Total Chunk Time: 0.007 seconds 
Rows Read: 200000, Total Rows Processed: 600000, Total Chunk Time: 0.041 seconds  

[1] 11.31794 
 

You can control the amount of progress reported to the console using the 

reportProgress field of PemaBaseClass. 

4.2.4 Using pemaCompute in a Distributed Compute Context 

RevoScaleR provides a number of distributed compute contexts, such as Hadoop 
clusters (Cloudera and Hortonworks).  Use of the same PEMA reference class object on 
these platforms is experimental.  It can be tried with data on those platforms by 

specifying the computeContext in the pemaCompute function. 

5 Additional Examples Using RevoPemaR 

A number of examples are provided in the demoScripts directory of the RevoPemaR 
package.  You can find the location of this directory by entering: 

path.package("RevoPemaR") 

5.1 Basic Text Mining Examples 

Two PEMA text mining analyses are provided as examples.  

 PemaPopularWords will accumulate the words used in a variable containing 
character data. The initialize method provides a variety of arguments to fine-tune 
the processing.  The code for the reference class generator is provided in 

PemaPopularWords.R, and examples using it in PemaPopularWordsEx.R. 

 PemaWordCount will count instances of specified words in a variable containing 
character data. The code for the reference class generator is provided in 

PemaWordCount.R, and examples using it in PemaWordCountEx.R. 

If you are using RevoScaleR and are interested in exploring text mining with a large 
dataset, instructions for downloading and code for importing Amazon reviews of fine 

foods is contained in the script finefoodsImport.R  

5.2 Performing By-Group Computations 

A PemaByGroup class is included in RevoPemaR to facilitate by-group computations.  

Examples of using this class are provided in the PemaByGroupEx.R demo script. It is 
assumed that the relevant variables for each group can fit into memory, and are then 
processed by arbitrary R functions. It requires that data be pre-sorted by group before 
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processing, so generally cannot be used in distributed compute contexts such as 
Hadoop. 

5.3 An Iterative PEMA Algorithm: Logistic Gradient Descent 

A simple logistic gradient descent algorithm is provided as an example of an iterative 
algorithm that inherits from a parent class. 

The PemaGradDescent class generator (in PemaGradDescent.R)  specifies a number of 
important methods for iterative algorithms, for example: 

 initIteration: initializes the appropriate field values at the beginning of each 

iteration 

 fn: a placeholder for the computation of the objective (loss) function for gradient 
descent 

 gradientFn:  a placeholder for the computation of the gradient function for 
gradient descent 

 hasConverged: checks convergence criteria 

This class generator cannot be used directly.  A child class generator must be created 

that at a minimum specifies the objective function (fn) and gradient function 

(gradientFn). An example is provided in PemaLogitGD.R, showing a logistic gradient 

descent.  A simple example of its use is in PemaLogitGDEx.R. 

6 Debugging RevoPemaR Code 

The R Reference Classes provide standard R debugging tools, and trace and untrace 
methods are provided in the base reference class.  R Reference Classes can also be 
debugged using the visual debugger provided by the R Productivity Environment that 
is included with Revolution R Enterprise for Windows. 

The PemaBaseClass provides a simple way of printing trace output that is particularly 

useful in debugging code in a distributed environment.  Calls to the outputTrace 

method within other methods will print the specified text if the traceLevel field value 

exceeds or is equal to the outTraceLevel argument: 
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meanPemaObj$outputTrace 

 
Class method definition for method outputTrace() 
function (text, outTraceLevel = 1)  
{ 
    "Prints text if the traceLevel >= outTraceLevel" 
    if (length(traceLevel) == 0) { 
        warning("traceLevel has not been initialized.") 
    } 
    else if (traceLevel >= outTraceLevel) { 
        cat(text) 
    } 
} 


