

RevoPemaR™

Getting Started Guide

We want our documentation to be useful, and we want it to address your needs. If you have comments on this or any

Revolution document, write to revodoc@microsoft.com.

The correct bibliographic citation for this manual is as follows: Microsoft Corporation. 2016. RevoPemaR

Getting Started Guide. Microsoft Corporation, Redmond, WA.

RevoPemaR Getting Started Guide

Copyright © 2016 Microsoft Corporation. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or

by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written

permission of Microsoft Corporation.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related

documentation by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of The

Rights in Technical Data and Computer Software clause at 52.227-7013.

Revolution R, Revolution R Enterprise, RPE, RevoScaleR, DeployR, RevoPemaR, RevoTreeView, and

Revolution Analytics are trademarks of Microsoft Corporation.

Revolution R Enterprise/Microsoft R Server includes the Intel® Math Kernel Library

(https://software.intel.com/en-us/intel-mkl). RevoScaleR includes Stat/Transfer software under license

from Circle Systems, Inc. Stat/Transfer is a trademark of Circle Systems, Inc.

Other product names mentioned herein are used for identification purposes only and may be trademarks

of their respective owners.

Microsoft

One Microsoft Way

Redmond WA 98052

U.S.A.

Revised on December 1, 2015

https://software.intel.com/en-us/intel-mkl

Contents
1 Overview ... 1

2 Installation... 1

3 Some Tips on R Reference Classes .. 1

4 A Tutorial Introduction to RevoPemaR ... 2

4.1 Using setPemaClass to Create a Class Generator .. 2

4.1.2 An Overview of the methods for PemaMean ... 3

4.1.3 The initialize method .. 3

4.1.4 The processData method .. 4

4.1.5 The updateResults method ... 4

4.1.6 The processResults method .. 5

4.1.7 The getVarsToUse method ... 5

4.2 Creating and Using a PemaMean Reference Class Object ... 6

4.2.1 Instantiating and Exploring a PemaMean Object ... 6

4.2.2 Using a PemaMean Object with the pemaCompute Function 8

4.2.3 Using a RevoScaleR Data Source with the pemaCompute Function 9

4.2.4 Using pemaCompute in a Distributed Compute Context 10

5 Additional Examples Using RevoPemaR .. 10

5.1 Basic Text Mining Examples ... 10

5.2 Performing By-Group Computations ... 10

5.3 An Iterative PEMA Algorithm: Logistic Gradient Descent .. 11

6 Debugging RevoPemaR Code .. 11

1 Overview

This guide is an introduction to using the RevoPemaR package to write customized
scalable and distributable analytics in R. PEMA stands for Parallel External Memory
Algorithm. An external memory algorithm is one that does not require all of the data to
be in memory at one time; that is, the data can be processed in chunks. Parallel
external memory algorithms are those where the chunks of data can be processed in
parallel, perhaps on different nodes of a cluster. The results are then combined and
processed at the end (or at the end of each iteration). The RevoPemaR package
provides a framework for writing parallel external memory algorithms in R, making use of
the R reference classes introduced by John Chambers in R 2.12.

The custom PEMA functions created using the RevoPemaR framework are appropriate
for small and large datasets, but are particularly useful in three common situations: 1) to
analyze data sets that are too big to fit in memory, 2) to create scalable data analysis
routines that can be developed locally with smaller data sets, then deployed to larger
data, and 3) to perform computations distributed over nodes in a cluster,

The RevoPemaR framework is portable. The goal is to be able to have code written
using R on a desktop be deployed using the RevoScaleR package on a high
performance platform, such as Hadoop.

2 Installation

The RevoPemaR package is included with Microsoft R Services 2016 (which also
contains the RevoScaleR package). The RevoPemaR package can also be installed
with a standard download of R 3.2.2

3 Some Tips on R Reference Classes

The PEMA classes used in RevoPemaR are based on R Reference Classes. We include a
brief overview of some tips for using R Reference Classes here, before moving to the
specifics of the PEMA classes.

R Reference Class objects are created using a generator function. This function has four
important pieces of information:

 The name of the class.

 The inheritance of the class, that is, the superclasses of the class. Fields and
methods of parent reference classes are inherited.

 The fields or member variables. These fields are accessed by reference (as in C++
or Java), so values of the fields for an object of this class can change.

 The methods of the class. These are functions that can be invoked by objects of this
class, which might change values of the fields.

2 A Tutorial Introduction to RevoPemaR

When working with reference class, here are a few tips to keep in mind:

 Reference class generators are created using setRefClass. For the PEMA

classes, we will use a wrapper for that function, setPemaClass.

 Field values are changed within methods using the non-local assignment

operator (<<-)

 Methods are documented internally with an initial line of text, rather than in an
.Rd file. This information is accessed using the $help method for the generator
function.

 The reference class object can be accessed in the methods using .self

 The parent method can be accessed using .callSuper

 Use the usingMethods call to declare that a method will be used by another
method.

 The code for a method can be displayed using an instantiated reference class

object, e.g. myRefClassObj$initialize.

4 A Tutorial Introduction to RevoPemaR

This section contains an overview of a simple example of estimating the mean of a

variable using the RevoPemaR framework. The key step is in creating a PemaMean
reference class generator function that provides the fields and methods for computing
the mean using a parallel external memory algorithm. This includes creating methods to
compute the sum and number of observations for each chunk of data, to update these
“intermediate results”, and at the end to use the intermediate results to compute the
mean.

4.1 Using setPemaClass to Create a Class Generator

Start by making sure that the RevoPemaR package is loaded:

library(RevoPemaR)

To create a PEMA class generator function, use the setPemaClass function. It is a

wrapper function for setRefClass. As with setRefClass, we will specify four basic

pieces of information when using setPemaClass: the class name, the superclasses, the
fields, and the methods. The structure looks something like this:

PemaMean <- setPemaClass(

 Class = "PemaMean",

 contains = "PemaBaseClass",

 fields = list(# To be written

),

methods = list(# To be written

))

The Class is the class name of your choice. The contains argument must specify

PemaBaseClass or a child class of PemaBaseClass. The specification of fields and
methods follows.

A Tutorial Introduction to RevoPemaR 3

4.1.1 Specifying the fields for PemaMean

The fields or member variables of our class represent all of the variables we need in
order to compute and store our intermediate and final results. Here are the fields we will
use for our “means” computation:

 fields = list(

 sum = "numeric",

 totalObs = "numeric",

 totalValidObs = "numeric",

 mean = "numeric",

 varName = "character"

),

4.1.2 An Overview of the methods for PemaMean

There are five methods we will specify for PemaMean. These methods are all in the

PemaBaseClass, and need to be overloaded for any custom analysis.

 initialize: initializes field values.

 processData: processes a chunk of data and updates field values

 updateResults: updates the field values of a PEMA class object from another

 processResults: computes the final results from the final intermediate results

 getVarsToUse: the names of the variables in the dataset used for analysis

4.1.3 The initialize method

The primary use of the initialize method is to initialize field values. The one field that

is initialized with user input in this example is the name of the variable to use in the

computations, varName. Use of the ellipses in the function signature allows for

initialization values to be passed up to the parent class using .callSuper, the first action

in the initialize method after the documentation. Here is the beginning of our
methods listing:

 methods = list(

 initialize = function(varName = "", ...)

 {

 'sum, totalValidObs, and mean are all initialized to 0'

 # callSuper calls the initialize method of the parent class

 callSuper(...)

The pemaSetClass function also provides additional functionality used in the

initialize method to ensure that all of the methods of the class and its parent classes
are included when an object is serialized. This is critical for distributed computing. To
use this functionality, add the following to the initialize method:

 usingMethods(.pemaMethods)

(If you do not want to use this functionality you can omit this line and set

includeMethods to FALSE in setPemaClass.)

4 A Tutorial Introduction to RevoPemaR

Now we finish the field initialization, setting the varName field to the input value and
setting the starting values for our computations to 0, remembering to use the double-
arrow non-local assignment operator to set field values:

 varName <<- varName

 sum <<- 0

 totalObs <<- 0

 totalValidObs <<- 0

 mean <<- 0

 },

4.1.4 The processData method

The processData method is the core of an external memory algorithm. It processes a

chunk of data and computes intermediate results, updating the field value(s). It takes as
an argument a rectangular list of data vectors; typically only the variable(s) of interest will
be included. Note that in our example code we do not compute the mean within this
method; that occurs after we have processed all of the data. Here we compute and
update the intermediate results: the sum and number of observations:

 processData = function(dataList)

 {

 'Updates the sum and total observations from

 the current chunk of data.'

 sum <<- sum + sum(as.numeric(dataList[[varName]]),

 na.rm = TRUE)

 totalObs <<- totalObs + length(dataList[[varName]])

 totalValidObs <<- totalValidObs +

 sum(!is.na(dataList[[varName]]))

 invisible(NULL)

 },

4.1.5 The updateResults method

The updateResults is the key method used when computations are done in parallel.

Consider the following scenario:

1) The master node on a cluster assigns each worker node the task of processing a
series of chunks of data.

2) The workers do so in parallel, each with their own instantiation of a reference class

object. Each worker calls processData for each chunk of data it needs to process.
In each call, the values of the fields of its reference class object are updated.

3) Now the master process must collect the information from each of the nodes, and
update all of the information in a single reference class object. This is done using the

updateResults method, which takes as an argument another instance of the
reference class. The reference class object from each of the nodes is processed by
the master node, resulting in the final intermediate results in the master node’s
reference class object’s fields.

A Tutorial Introduction to RevoPemaR 5

Here is the updateResults method for our PemaMean:

 updateResults = function(pemaMeanObj)

 {

 'Updates the sum and total observations from

 another PemaMean object.'

 sum <<- sum + pemaMeanObj$sum

 totalObs <<- totalObs + pemaMeanObj$totalObs

 totalValidObs <<- totalValidObs + pemaMeanObj$totalValidObs

 invisible(NULL)

 },

4.1.6 The processResults method

The processResults performs any necessary computations to produce the final

result from the accumulated intermediate results. In this case it is simple; we divide
the sum by the number of valid observations (assuming we have some):

 processResults = function()

 {

 'Returns the sum divided by the totalValidObs.'

 if (totalValidObs > 0)

 {

 mean <<- sum/totalValidObs

 }

 else

 {

 mean <<- as.numeric(NA)

 }

 return(mean)

 },

4.1.7 The getVarsToUse method

The getVarsToUse method specifies the names of the variables in the dataset that are
used in the analysis. Specifying this information can improve performance if reading
data from disk.

 getVarsToUse = function()

 {

 'Returns the varName.'

 varName

 }

) # End of methods

) # End of class generator

6 A Tutorial Introduction to RevoPemaR

4.2 Creating and Using a PemaMean Reference Class Object

4.2.1 Instantiating and Exploring a PemaMean Object

A version of the code in the previous section is contained within the RevoPemaR

package and exported, so we can directly work with the PemaMean generator without
first running the code. We can show the names of all the methods, including those that

are explicitly overridden by the PemaMean class:

PemaMean$methods()

 [1] ".pemaMethods" ".pemaMethods#PemaBaseClass"
 [3] "callSuper" "compute"
 [5] "copy" "copyFields"
 [7] "createReturnObject" "export"
 [9] "field" "finalizeNode"
[11] "getClass" "getFieldList"
[13] "getRefClass" "getVarsToRead"
[15] "getVarsToUse" "getVarsToUse#PemaBaseClass"
[17] "hasConverged" "import"
[19] "initFields" "initialize"
[21] "initialize#PemaBaseClass" "initIteration"
[23] "outputTrace" "processAllData"
[25] "processData" "processData#PemaBaseClass"
[27] "processResults" "processResults#PemaBaseClass"
[29] "setFieldList" "show"
[31] "trace" "untrace"
[33] "updateResults" "updateResults#PemaBaseClass"
[35] "usingMethods"

Some of the methods (e.g., initIteration, getFieldList) are inherited from the

PemaBaseClass. Others (e.g., .callSuper, methods) are inherited from the base
reference class generator.

We can use the help method with the generator function to get help on specific
methods:

PemaMean$help(initialize)

Call:
$initialize(varName = , ...)

sum, totalValidObs, and mean are all initialized to 0

Next we’ll generate a default PemaMean object, and print out the values of its fields

(including those inherited):

meanPemaObj <- PemaMean()

meanPemaObj

Reference class object of class "PemaMean"

A Tutorial Introduction to RevoPemaR 7

Reference class object of class "PemaMean" (from the global environment)
Field ".isPemaObject":
[1] TRUE
Field ".isDistributedContext":
[1] FALSE
Field ".hasOutFile":
[1] FALSE
Field ".outFile":
NULL
Field ".append":
[1] "none"
Field ".overwrite":
[1] FALSE
Field ".onlyKeepTransformedData":
[1] FALSE
Field "traceLevel":
[1] 0
Field "iter":
[1] 0
Field "maxIters":
[1] 2000
Field "useRevoScaleR":
[1] TRUE
Field ".dataInMemory":
[1] FALSE
Field ".dataInMemoryPrepared":
[1] FALSE
Field "reportProgress":
[1] 2
Field "sum":
[1] 0
Field "totalObs":
[1] 0
Field "totalValidObs":
[1] 0
Field "mean":
[1] 0
Field "varName":
[1] ""

We can also print out the code for a specific method using an instantiated object. For

example, the initialize method of the PemaMean object in the RevoPemaR package is:

meanPemaObj$initialize

Class method definition for method initialize()
function (varName = "", ...)
{
 "sum, totalValidObs, and mean are all initialized to 0"
 callSuper(...)
 usingMethods(.pemaMethods)
 varName <<- varName
 sum <<- 0
 totalObs <<- 0

8 A Tutorial Introduction to RevoPemaR

 totalValidObs <<- 0
 mean <<- 0
}
<environment: 0x000000003148ea40>

 Methods used:
 ".pemaMethods", "callSuper", "usingMethods""

4.2.2 Using a PemaMean Object with the pemaCompute Function

The pemaCompute function takes two required arguments: an “analysis” object and a

data source object. The analysis object must be generated by setPemaClass and

inherit (directly or indirectly) from PemaBaseClass. The data source object must be
either a data frame or a data source object supported by the RevoScaleR package if it is

available. The ellipses will take any additional information used in the initialize
method.

Let’s compute a mean of some random numbers:

set.seed(67)

pemaCompute(pemaObj = meanPemaObj,

 data = data.frame(x = rnorm(1000)), varName = "x")

[1] 0.00504128

If we again print the values of the fields of our meanPemaObj, we will see the updated
values:

meanPemaObj

Reference class object of class "PemaMean" (from the global environment)
Field ".isPemaObject":
[1] TRUE
Field ".isDistributedContext":
[1] FALSE
Field ".hasOutFile":
[1] FALSE
Field ".outFile":
NULL
Field ".append":
[1] "none"
Field ".overwrite":
[1] FALSE
Field ".onlyKeepTransformedData":
[1] FALSE
Field "traceLevel":
[1] 0
Field "iter":
[1] 1
Field "maxIters":
[1] 2000

A Tutorial Introduction to RevoPemaR 9

Field "useRevoScaleR":
[1] TRUE
Field ".dataInMemory":
[1] FALSE
Field ".dataInMemoryPrepared":
[1] FALSE
Field "reportProgress":
[1] 2
Field "sum":
[1] 5.04128
Field "totalObs":
[1] 1000
Field "totalValidObs":
[1] 1000
Field "mean":
[1] 0.00504128
Field "varName":
[1] "x"

By default the pemaCompute method will reinitialize the pemaObj. By setting the

initPema flag to FALSE, we can add more data to our analysis:

pemaCompute(pemaObj = meanPemaObj,

 data = data.frame(x = rnorm(1000)), varName = "x",

 initPema = FALSE)

[1] 0.001516969

meanPemaObj$totalValidObs

[1] 2000

Note that the number of total valid observations is now 2000.

4.2.3 Using a RevoScaleR Data Source with the pemaCompute Function

In the previous section we analysed data in memory. The RevoScaleR package
provides a data source framework that allows data to be automatically extracted in

chunks from data on disk or in a database. It also provides the .xdf file format that can
very efficiently extract chunks of data.

We can use a sample .xdf file provided with the package. First we will create a data
source for this file:

airXdf <- RxXdfData(file.path(rxGetOption("sampleDataDir"),

 "AirlineDemoSmall.xdf"))

Using the meanPemaObj created above, we compute the mean of the variable ArrDelay
(the arrival delay in minutes). The data in this file is stored in three blocks, with 200,000

rows in each block. The pemaCompute function will process these chunks one at a time:

10 Additional Examples Using RevoPemaR

pemaCompute(meanPemaObj, data = airXdf, varName = "ArrDelay")

Rows Read: 200000, Total Rows Processed: 200000, Total Chunk Time: 0.009 seconds
Rows Read: 200000, Total Rows Processed: 400000, Total Chunk Time: 0.007 seconds
Rows Read: 200000, Total Rows Processed: 600000, Total Chunk Time: 0.041 seconds

[1] 11.31794

You can control the amount of progress reported to the console using the

reportProgress field of PemaBaseClass.

4.2.4 Using pemaCompute in a Distributed Compute Context

RevoScaleR provides a number of distributed compute contexts, such as Hadoop
clusters (Cloudera and Hortonworks). Use of the same PEMA reference class object on
these platforms is experimental. It can be tried with data on those platforms by

specifying the computeContext in the pemaCompute function.

5 Additional Examples Using RevoPemaR

A number of examples are provided in the demoScripts directory of the RevoPemaR
package. You can find the location of this directory by entering:

path.package("RevoPemaR")

5.1 Basic Text Mining Examples

Two PEMA text mining analyses are provided as examples.

 PemaPopularWords will accumulate the words used in a variable containing
character data. The initialize method provides a variety of arguments to fine-tune
the processing. The code for the reference class generator is provided in

PemaPopularWords.R, and examples using it in PemaPopularWordsEx.R.

 PemaWordCount will count instances of specified words in a variable containing
character data. The code for the reference class generator is provided in

PemaWordCount.R, and examples using it in PemaWordCountEx.R.

If you are using RevoScaleR and are interested in exploring text mining with a large
dataset, instructions for downloading and code for importing Amazon reviews of fine

foods is contained in the script finefoodsImport.R

5.2 Performing By-Group Computations

A PemaByGroup class is included in RevoPemaR to facilitate by-group computations.

Examples of using this class are provided in the PemaByGroupEx.R demo script. It is
assumed that the relevant variables for each group can fit into memory, and are then
processed by arbitrary R functions. It requires that data be pre-sorted by group before

Debugging RevoPemaR Code 11

processing, so generally cannot be used in distributed compute contexts such as
Hadoop.

5.3 An Iterative PEMA Algorithm: Logistic Gradient Descent

A simple logistic gradient descent algorithm is provided as an example of an iterative
algorithm that inherits from a parent class.

The PemaGradDescent class generator (in PemaGradDescent.R) specifies a number of
important methods for iterative algorithms, for example:

 initIteration: initializes the appropriate field values at the beginning of each

iteration

 fn: a placeholder for the computation of the objective (loss) function for gradient
descent

 gradientFn: a placeholder for the computation of the gradient function for
gradient descent

 hasConverged: checks convergence criteria

This class generator cannot be used directly. A child class generator must be created

that at a minimum specifies the objective function (fn) and gradient function

(gradientFn). An example is provided in PemaLogitGD.R, showing a logistic gradient

descent. A simple example of its use is in PemaLogitGDEx.R.

6 Debugging RevoPemaR Code

The R Reference Classes provide standard R debugging tools, and trace and untrace
methods are provided in the base reference class. R Reference Classes can also be
debugged using the visual debugger provided by the R Productivity Environment that
is included with Revolution R Enterprise for Windows.

The PemaBaseClass provides a simple way of printing trace output that is particularly

useful in debugging code in a distributed environment. Calls to the outputTrace

method within other methods will print the specified text if the traceLevel field value

exceeds or is equal to the outTraceLevel argument:

12 Debugging RevoPemaR Code

meanPemaObj$outputTrace

Class method definition for method outputTrace()
function (text, outTraceLevel = 1)
{
 "Prints text if the traceLevel >= outTraceLevel"
 if (length(traceLevel) == 0) {
 warning("traceLevel has not been initialized.")
 }
 else if (traceLevel >= outTraceLevel) {
 cat(text)
 }
}

